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Abstract The role of curvature in relation with Lie algebra contractions of the pseudo-
orthogonal algebras so(p, q) is fully described by considering some associated symmetrical
homogeneous spaces of constant curvature within a Cayley–Klein framework. We show
that a given Lie algebra contraction can be interpreted geometrically as the zero-curvature
limit of some underlying homogeneous space with constant curvature. In particular, we
study in detail the contraction process for the three classical Riemannian spaces (spherical,
Euclidean, hyperbolic), three non-relativistic (Newtonian) spacetimes and three relativistic
((anti-)de Sitter and Minkowskian) spacetimes. Next, from a different perspective, we make
use of quantum deformations of Lie algebras in order to construct a family of spaces of non-
constant curvature that can be interpreted as deformations of the above nine spaces. In this
framework, the quantum deformation parameter is identified as the parameter that controls
the curvature of such “quantum” spaces.
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1 Introduction

Nowadays, contraction of Lie algebras is a well established theory that focuses the interest
of both mathematicians and physicists. We recall that Lie algebra contractions began to be
systematically formulated from the early works of Inönü and Wigner [1], Segal [2], and
Saletan [3] (see also [4–6] and references therein). Roughly speaking, the way to obtain a
contracted Lie algebra g′ from an initial one g is to define the generators of g′ in terms of
those of g in an “adequate” form by introducing a contraction parameter ε in such a manner
that under the limit ε → 0 the commutation relations of g reduce to those of g′.

For arbitrary dimension N , two well known examples of contraction are: (i) the flat
contraction that goes from so(N + 1) to the Euclidean algebra iso(N), and (ii) the non-
relativistic contraction that transforms the Poincaré algebra iso(N − 1,1) into the Galilean
one iiso(N − 1). When looking at the underlying symmetrical homogeneous spaces associ-
ated to the above Lie algebras, one finds that these contractions can geometrically be inter-
preted in terms of the annihilation of some constant curvature of such spaces [7]. The for-
mer example relates the N -dimensional (ND) spherical space of points SO(N + 1)/SO(N)

of constant curvature +1/R2 (R is the radius of the sphere), with the flat Euclidean one
ISO(N)/SO(N), that is, the limit ε → 0 corresponds to R → ∞. The latter contraction re-
lates two flat spaces of points but can also be regarded as the contraction from the 2(N −1)D
space of (time-like) lines ISO(N − 1,1)/(R ⊗ SO(N − 1)), with curvature −1/c2 (c is the
speed of light) in the flat Minkowskian spacetime ISO(N − 1,1)/SO(N − 1,1), to the flat
space of worldlines IISO(N − 1)/(R ⊗ SO(N − 1)) in the flat Galilean space of points
IISO(N − 1)/ISO(N − 1) under the limit c → ∞. This interpretation of Lie algebra con-
tractions in terms of zero-curvature limits for homogeneous spaces can be widely applied for
many other cases, which fully cover the set of possible contractions within the four Cartan
families of real semisimple Lie algebras.

On the other hand, let us consider a quantum deformation of the Lie algebra g endowed
with a Hopf structure [8–11], that is, a quantum algebra Uz(g) which is an algebra of
formal power series in a deformation parameter z (q = ez) with coefficients in U(g). In
this case we know that if a Lie algebra contraction g → g′ exists under the limit ε → 0,
then this contraction limit can be also implemented at the deformed level Uz(g) → Uz′(g′)
through a so called Lie bialgebra contraction [12]. The latter keeps the same contraction
map for the generators while adds some transformation for the contracted deformation pa-
rameter z′ = z/εn, where n is a real number to be fixed for each specific algebra and con-
traction. This process is rather similar to the so called generalized Inönü–Wigner contrac-
tions [4]. By following this approach, for the two aforementioned contractions one finds that
Uz(so(N + 1)) → Uz′(iso(N)) and Uz(iso(N − 1,1)) → Uz′(iiso(N − 1)) under the limit
ε → 0.

We stress that a quantum deformation of the Lie algebra g provides an extra “quantity” in
the underlying symmetry structure, the deformation parameter z, which can be interpreted
in different ways depending on the specific model under consideration. For instance, as a
fundamental scale in “generalizations” of the special relativity theory [13, 14], as a lattice
step in relation with discretized symmetries [15], as a coupling constant in N -body prob-
lems [16], etc. However, one has to pay the price of loosing the Lie structure and therefore
the corresponding geometric interpretation provided by the associated Lie group and their
homogeneous spaces. Hence, in principle, the geometrical interpretation of “quantum” con-
tractions in terms of curvatures seems to be lost.

Nevertheless, if the Lie algebra contraction procedure is read in the reverse direction as a
Lie algebra deformation [17] or classical deformation, a new interpretation for quantum de-
formations arises in a “natural” way. It turns out that the classical deformation g′ → g (more
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precisely, from U(g′) to g) can be interpreted as the introduction of a constant curvature in
a formerly flat homogeneous space associated to both g and g′ [7, 18]. Such a deformation
process can be iterated until when one arrives to a semisimple Lie algebra g, for which
the associated homogeneous spaces (of points, lines, 2-planes, etc.) are endowed with a
non-zero constant curvature. Consequently, since quantum algebras go beyond Lie algebras
(generalizing them) the above ideas suggest that a quantum deformation might also be un-
derstood as the introduction of some kind of curvature in an appropriate context. In fact, we
have recently shown [19, 20] that a quantum deformation does indeed introduce a curvature
on a certain flat space, but now this curvature is generically non-constant and is governed
by the deformation parameter z. As a straightforward consequence, the non-deformed limit
z → 0, under which Uz(g) → U(g) ∼ g, can also be understood as a zero-curvature limit,
i.e. as a contraction process.

The aim of this paper is to give an insight into such a global and unified overview of
contractions and classical/quantum deformations in relation with curved spaces. Recall that
both subjects usually appear as two complete separate frameworks in the literature: con-
tractions/classical deformations versus quantum deformations. For this purpose we shall
choose a relevant family of nine spaces of constant curvature, namely: Riemannian (spher-
ical, Euclidean and hyperbolic), semi-Riemannian (non-relativistic oscillating/expanding
Newton–Hooke (NH) and Galilean), and pseudo-Riemannian (relativistic (anti-)de Sitter
and Minkowskian) spaces. Such a family can be described in a common setting by making
use of the so called orthogonal Cayley–Klein (CK) or quasi-simple Lie algebras [21–28]
which are all of them contractions of so(N + 1).

The scheme of the paper is as follows. In the next section we recall the structure of the
CK algebras, we also construct a family of symmetrical homogeneous spaces associated to
each of them from a group theoretical approach, and next we explicitly obtain the above nine
spaces in terms of geodesic polar (spherical) coordinates. In this way the role of curvature
in the context of Lie algebra contractions/deformations is highlighted. In Sect. 3, we start
from the non-standard quantum deformation of sl(2,R) [29], Uz(sl(2,R)), written as a de-
formed Poisson algebra and, by taking three copies of Uz(sl(2,R)), we are able to construct
an infinite family of 3D deformed spaces endowed, in general, with a non-constant (scalar)
curvature. A further change of coordinates allows us to introduce spherical coordinates in
such a manner that we find that such deformed spaces are just non-constant curvature coun-
terparts of the homogeneous spaces described in Sect. 2. In this way the relationships be-
tween curvature and contraction/quantum deformations can be explicitly analysed. Finally,
Sect. 4 contains some remarks and open problems.

2 Contraction, Curvature and Lie Algebras

2.1 Orthogonal CK Algebras

Let us consider the real Lie algebra so(N + 1) whose 1
2N(N + 1) generators Jab (a, b =

0,1, . . . ,N , a < b) satisfy the non-vanishing Lie brackets given by

[Jab, Jac] = Jbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = Jab, a < b < c. (2.1)

A fine grading group Z⊗N
2 of so(N +1) is spanned by the following N commuting involutive

automorphisms �(m) (m = 1, . . . ,N) of (2.1):

�(m)(Jab) =
{

Jab, if either m ≤ a or b < m,

−Jab, if a < m ≤ b.
(2.2)
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By applying the graded contraction theory [30, 31] a large family of contracted real Lie
algebras can be obtained from so(N + 1); this depends on 2N − 1 real contraction parame-
ters [32] which includes from the simple pseudo-orthogonal algebras so(p, q) (the Bl and
Dl Cartan series) (when all the contraction parameters are different from zero) up to the
Abelian algebra at the opposite case (when all the parameters are equal to zero). Certainly,
properties associated with the simplicity of the algebra are lost at some point beyond the
simple algebras in the contraction sequence. However there exists a particular subset of con-
trated Lie algebras which is “close to” to the simple ones [33], whose members are called
CK or quasi-simple orthogonal algebras [24–27]. For instance, all the CK algebras share,
in any dimension, the same rank defined as the number of Casimir invariants [28]. These
are precisely called CK algebras since they are exactly the family of motion algebras of the
geometries of a real space with a projective metric in the CK sense [21, 22].

The orthogonal CK family, here denoted soκ (N + 1), depends on N real contraction
coefficients κ = (κ1, . . . , κN) and comprises 3N Lie algebras. The non-zero commutators
read [33]:

[Jab, Jac] = κabJbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = κbcJab, a < b < c, (2.3)

without sum over repeated indices and where the two-index coefficients κab are expressed
in terms of the N basic ones through

κab = κa+1κa+2 · · ·κb, a, b = 0,1, . . . ,N, a < b. (2.4)

Each non-zero real coefficient κm can be reduced to either +1 or −1 by a rescaling of the
Lie generators. The case κm = 0 can be interpreted as an Inönü–Wigner contraction [1], with
parameter εm → 0, and defined by the map (cf. (2.2)):

�(m)(Jab) =
{

Jab, if either m ≤ a or b < m,

εmJab, if a < m ≤ b.
(2.5)

Each involution �(m) (2.2) provides a Cartan-like decomposition in anti-invariant and
invariant subspaces, denoted p(m) and h(m), respectively:

soκ (N + 1) = p(m) ⊕ h(m), (2.6)

fulfilling

[
h(m), h(m)

] ⊂ h(m),
[
h(m),p(m)

] ⊂ p(m),
[
p(m),p(m)

] ⊂ h(m), (2.7)

and where h(m) is a Lie subalgebra with a direct sum structure:

h(m) = soκ1,...,κm−1(m) ⊕ soκm+1,...,κN
(N + 1 − m), (2.8)

while the vector subspace p(m) is not always a subalgebra.
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The decomposition (2.6) can be visualized in an array form as follows:

J01 J02 · · · J0m−1 J0m J0m+1 · · · J0N

J12 · · · J1m−1 J1m J1m+1 · · · J1N

. . .
...

...
...

...

Jm−2m−1 Jm−2m Jm−2m+1 · · · Jm−2N

Jm−1m Jm−1m+1 · · · Jm−1N

Jmm+1 · · · JmN

. . .
...

JN−1N

(2.9)

The subspace p(m) is spanned by the m(N + 1 − m) generators inside the rectangle; the
left and down triangles correspond, in this order, to the subalgebras soκ1,...,κm−1(m) and
soκm+1,...,κN

(N + 1 − m) of h(m) (2.8).
As some relevant members contained within soκ(N + 1) we point out [28]:

• When κa 
= 0 ∀a, soκ (N + 1) is a (pseudo-)orthogonal algebra so(p, q) (p + q = N + 1)
and (p, q) are the number of positive and negative terms in the invariant quadratic form
with matrix (1, κ01, κ02, . . . , κ0N).

• When κ1 = 0 we recover the inhomogeneous algebras with semidirect sum structure

so0,κ2,...,κN
(N + 1) ≡ tN  soκ2,...,κN

(N) ≡ iso(p, q), p + q = N,

where the Abelian subalgebra tN is spanned by 〈J0b; b = 1, . . . ,N〉 and soκ2,...,κN
(N)

preserves the quadratic form with matrix diag(+, κ12, . . . , κ1N).
• When κ1 = κ2 = 0 we get a “twice-inhomogeneous” pseudo-orthogonal algebra

so0,0,κ3,...,κN
(N + 1) ≡ tN  (tN−1  soκ3,...,κN

(N − 1)) ≡ iiso(p, q), p + q = N − 1,

where the metric of the subalgebra soκ3,...,κN
(N − 1) is (1, κ23, κ24, . . . , κ2N).

• When κa = 0, a /∈ {1,N}, these contracted algebras can be described as [34]

ta(N+1−a)  (soκ1,...,κa−1(p, q)⊕ soκa+1,...,κN
(p′, q ′)), p +q = a, p′ +q ′ = N + 1 −a.

• The fully contracted case in the CK family corresponds to setting all κa = 0. This is the
so called flag algebra so0,...,0(N + 1) ≡ i . . . iso(1) [24] such that iso(1) ≡ R.

We recall that the kinematical algebras associated to different models of spacetimes of
constant curvature [35, 36] also belong to these CK algebras [32, 37] and they will be de-
scribed in Sect. 2.3.

2.2 Symmetrical Homogeneous CK Spaces

If we now consider the CK group SOκ (N + 1) with Lie algebra soκ (N + 1) we find that
each Lie subalgebra h(m) (2.8) generates a subgroup H(m) leading to the quotient space

S(m) ≡ SOκ (N + 1)/(SOκ1,...,κm−1(m) ⊗ SOκm+1,...,κN
(N + 1 − m)). (2.10)

The dimension of S(m) is that of p(m) (see (2.9)) which is identified with the tangent space
to S(m) at the origin:

dim(S(m)) = m(N + 1 − m). (2.11)
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Then S(m) is a symmetrical homogeneous space (associated to the involution (2.2)), and
there are N such symmetrical homogeneous spaces S(m) (m = 1, . . . ,N) for each CK group
SOκ (N + 1).

Notice that although some Lie algebras in the CK family soκ (N +1) are isomorphic, their
corresponding set of N homogeneous spaces is different. Furthermore, these N spaces are
not completely unrelated, and it is possible to reformulate all properties of any given space in
terms of any other one. In particular, S(2), . . . ,S(N) are usually interpreted in terms of S(1),
which covers the classical Riemannian spaces and spacetimes of constant curvature; such an
interpretation lies in the fact that the subgroups H(m) (m = 1,2, . . . ,N ) are identified with
the isotopy subgroups of a point (m = 1), a line (m = 2), . . . , a hyperplane (m = N ) in S(1).
Hence, if S(1) is taken as the space, its elements are called points, S(2) is the space of all
lines in S(1), S(3) is the space of all 2-planes in S(1), etc.

We define the rank of the CK space S(m) as the number of independent invariants under
the action of the CK group for each generic pair of elements in S(m) (see [38] for the Euclid-
ean case); such a number turns out to be the same for all S(m), so it does not depend on the
values of κ :

rank(S(m)) = min(m,N + 1 − m). (2.12)

Thus, S(1) has a single invariant (the ordinary distance) associated to each pair of points;
S(2) has two invariants for each pair of lines (an angle and a distance between the two lines),
and, in general, S(m) has (2.12) invariants for a pair of (m− 1)-planes (stationary angles and
a single stationary distance).

The sectional curvature of S(m) turns out to be κm. We display in Table 1 all these results
concerning S(m).

So far, we have interpreted each (graded) contraction parameter κm, appearing in an “ab-
stract” form in the commutation relations of soκ (N + 1) (2.3), as the constant curvature
of the associated symmetrycal homogeneous space S(m) = SOκ (N + 1)/H (m). Then when
the contraction process is read in the reverse way, as a classical deformation one, we find
that to introduce a non-zero constant κm in the Lie brackets (2.3) geometrically corresponds
to the obtention of a curved space S(m) with κm 
= 0 from an initial flat one with κm = 0;
notice that the “flat” and “non-relativistic” contraction/deformation examples commented
in the introduction are recovered as two very particular cases within this framework for

Table 1 Isotopy subgroup, sectional curvature, dimension and rank of the set of N symmetrical homoge-
neous spaces S(m) ≡ SOκ (N + 1)/H(m)

Isotopy subgroup Curv. Dimension Rank

H(1) = SOκ2,...,κN
(N) κ1 N 1

H(2) = SOκ1 (2) ⊗ SOκ3,...,κN
(N − 1) κ2 2(N − 1) 2

H(3) = SOκ1,κ2 (3) ⊗ SOκ4,...,κN
(N − 2) κ3 3(N − 2) 3

.

.

.
.
.
.

.

.

.
.
.
.

H (m) = SOκ1,...,κm−1 (m) ⊗ SOκm+1,...,κN
(N + 1 − m) κm m(N + 1 − m) min(m,N + 1 − m)

.

.

.
.
.
.

.

.

.
.
.
.

H (N−2) = SOκ1,...,κN−3 (N − 2) ⊗ SOκN−1,κN
(3) κN−2 (N − 2)3 3

H(N−1) = SOκ1,...,κN−2 (N − 1) ⊗ SOκN
(2) κN−1 (N − 1)2 2

H(N) = SOκ1,...,κN−1 (N) κN N 1
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κ = (0,+, . . . ,+) ↔ (+1/R2,+, . . . ,+) and (0,0,+, . . . ,+) ↔ (0,−1/c2,+, . . . ,+), re-
spectively. In this sense, we recall that the usual approach to Lie algebra deformations [6, 17]
introduce non-zero structure constants in a given Lie algebra leading to a “less” Abelian one
by applying cohomology techniques (see, e.g., [39] for a complete description of Galilean
deformations). Thus by starting from the flag algebra so0,...,0(N + 1) one could reach the
simple ones soκ (N + 1) with all κm 
= 0. Nevertheless such an algebraic procedure does
not focus on the underlying homogeneous spaces. In contrast, an alternative deformation
formalism makes use of universal enveloping algebras and of their associated homogeneous
spaces [7, 18], in such a manner that the deformed generators are written as elements of
the universal enveloping algebra to be deformed. We omit here the details, but we remark
that this approach is directly related with the CK scheme of homogeneous spaces and, fur-
thermore, this suggests some kind of relationship with quantum algebras, as these are also
constructed within universal enveloping algebras; in fact we will establish such a connection
in Sect. 3.

2.3 Riemannian and (Non-)Relativistic Spaces of Constant Curvature

From now on we assume that κ3 = · · · = κN = +1 and consider the rank-1 ND space of
points

S(1) = SOκ1,κ2,+,...,+(N + 1)/SOκ2,+,...,+(N) ≡ SOκ1,κ2(N + 1)/SOκ2(N) ≡ S
N
[κ1]κ2

,

with sectional curvature κ1 and metric with signature determined by κ2 through the matrix
diag(+1, κ2, . . . , κ2). Hence we shall deal with the following nine well known spaces of
constant curvature:

• When κ2 > 0, S
N
[κ1]+ covers the three classical Riemannian spaces:

Spherical: S
N
[+]+ ≡ SN = SO(N + 1)/SO(N).

Euclidean: S
N
[0]+ ≡ EN = ISO(N)/SO(N).

Hyperbolic: S
N
[−]+ ≡ HN = SO(N,1)/SO(N).

Their curvature can be written as κ1 = ±1/R2 where R is the radius of the space (R → ∞
for the Euclidean case).

• When κ2 < 0 we get a Lorentzian metric corresponding to relativistic spacetimes [35]:

Anti-de Sitter: S
N
[+]− ≡ AdS(N−1)+1 = SO(N − 1,2)/SO(N − 1,1).

Minkowskian: S
N
[0]− ≡ M(N−1)+1 = ISO(N − 1,1)/SO(N − 1,1).

de Sitter: S
N
[−]− ≡ dS(N−1)+1 = SO(N,1)/SO(N − 1,1).

The two contraction parameters can be expressed as κ1 = ±1/τ 2, where τ is the (time)
universe radius, and κ2 = −1/c2, where c is the speed of light.

• The contraction κ2 = 0 (c → ∞) gives rise to the non-relativistic spacetimes with a de-
generate metric [35]:

Oscillating NH: S
N
[+]0 ≡ NH(N−1)+1

+ = T2N−2  (SO(2) ⊗ SO(N − 1))/ISO(N − 1).

Galilean: S
N
[0]0 ≡ G(N−1)+1 = IISO(N − 1)/ISO(N − 1).

Expanding NH: S
N
[−]0 ≡ NH(N−1)+1

− = T2N−2  (SO(1,1) ⊗ SO(N − 1))/ISO(N − 1).
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In what follows we construct an explicit model of the space S
N
[κ1]κ2

in terms of (N + 1)

ambient coordinates and of N intrinsic quantities. The CK algebra soκ1,κ2(N + 1) has a
vector representation given by the following (N +1)× (N +1) real matrices fulfilling (2.3):

Jab = −κabeab + eba, (2.13)

where eab is the matrix with entries (eab)
l
m = δl

aδ
m
b . In this realization, any element X ∈

soκ1,κ2(N + 1) satisfies the equation:

XT
Iκ + IκX = 0, Iκ = diag(+1, κ1, κ1κ2, . . . , κ1κ2), (2.14)

where XT is the transpose matrix of X. Hence any element G ∈ SOκ1,κ2(N + 1) verifies
GT

IκG = Iκ and SOκ1,κ2(N + 1) is a group of isometries of Iκ acting on a linear ambi-
ent space R

N+1 = (x0, x1, . . . , xN) through matrix multiplication. The origin O in S
N
[κ1]κ2

has (N + 1) ambient coordinates O = (1,0, . . . ,0) which is invariant under the subgroup
H(1) = SOκ2(N). The orbit of O corresponds to S

N
[κ1]κ2

which is contained in the “sphere”
determined by Iκ :

� ≡ x2
0 + κ1x

2
1 + κ1κ2

N∑
j=2

x2
j = 1. (2.15)

The CK metric on S
N
[κ1]κ2

follows from the flat ambient metric in R
N+1 in the form

ds2
CK = 1

κ1

(
dx2

0 + κ1dx2
1 + κ1κ2

N∑
j=2

dx2
j

)∣∣∣∣
�

. (2.16)

Next we parametrize the (N + 1) ambient coordinates x of a generic point P in terms
of N intrinsic quantities (r, θ,φ3, . . . , φN) called geodesic polar coordinates [40] on S

N
[κ1]κ2

through the following action of N one-parametric subgroups of SOκ1,κ2(N + 1) on O:

x = exp(φNJN−1N) exp(φN−1JN−2N−1) · · · exp(φ3J23) exp(θJ12) exp(rJ01)O, (2.17)

which yields

x0 = Cκ1(r),

x1 = Sκ1(r)Cκ2(θ),

xi = Sκ1(r)Sκ2(θ)

i∏
s=3

sinφs cosφi+1,

xN = Sκ1(r)Sκ2(θ)

N∏
s=3

sinφs,

(2.18)

where i = 2, . . . ,N − 1 and a product
∏i

s such that s > i is assumed to be equal to 1. The
κ-trigonometric functions Cκ (x) and Sκ (x) are defined by [40] (here for κ ∈ {κ1, κ2}):

Cκ (x) =
⎧⎨
⎩

cos
√

κ x, κ > 0,
1, κ = 0 ,
cosh

√−κ x, κ < 0,
Sκ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
κ

sin
√

κ x, κ > 0,

x, κ = 0,
1√−κ

sinh
√−κ x, κ < 0.

(2.19)
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The (physical) geometrical role of these coordinates is as follows. Let us consider a (time-
like) geodesic l1 and other (N − 1) (space-like) geodesics lj (j = 2, . . . ,N) in S

N
[κ1]κ2

which
are orthogonal at the origin O in such a manner that each translation generator J0i moves O
along li . Then,

• The radial coordinate r is the distance between the point P and the origin O measured
along the geodesic l that joins both points. In the Riemannian spaces with κ1 = ±1/R2,
r has dimensions of length, [r] = [R]; notice that the dimensionless coordinate r/R is
usually taken instead of r and r/R is an ordinary angle [42]. In the spacetimes with
κ1 = ±1/τ 2, r has dimensions of a time-like length, [r] = [τ ].

• The coordinate θ is an ordinary angle in the three Riemannian spaces (κ2 = +1), while it
corresponds to a rapidity in the spacetimes (κ2 = −1/c2) with dimensions [θ ] = [c]. For
the nine spaces, θ parametrizes the orientation of l with respect to the basic (time-like)
geodesic l1.

• The remaining (N −2) coordinates φ3, φ4, . . . , φN are ordinary angles for the nine spaces
and correspond to the polar angles of l relative to the reference flag at the origin O spanned
by {l1, l2}, {l1, l2, l3}, . . . , {l1, . . . , lN−1}, respectively.

In the three Riemannian cases (r, θ,φ3, . . . , φN) parametrize the complete space, while
in the relativistic spacetimes these only cover the time-like region limited by the light-cone
on which θ → ∞. The flat contraction κ1 = 0 gives rise to the usual spherical coordinates
in the Euclidean space (with κ2 = +1).

By introducing (2.18) in (2.16), we obtain the CK metric in S
N
[κ1]κ2

expressed in geodesic
polar coordinates:

ds2
CK = dr2 + κ2S2

κ1
(r)

{
dθ2 + S2

κ2
(θ)

N∑
i=3

(
i−1∏
s=3

sin2 φs

)
dφ2

i

}
. (2.20)

The sectional Kij and the scalar K curvatures are Kij = κ1 and K = N(N − 1)κ1.
As an example, which is also necessary for our further development in relation with

quantum deformations, we display in Table 2 these results for N = 3.

3 Contraction, Curvature and Quantum Algebras

3.1 A Quantum Deformation of sl(2,R)

Let us consider the algebra of formal power series in a real deformation parameter z (q = ez)
with coefficients in U(sl(2,R)). If this algebra is endowed with a (deformed) Hopf structure
[8] we get the so called non-standard quantum deformation of U(sl(2,R)), here denoted
by Uz(sl(2,R)) ≡ slz(2). The Poisson analogue of this quantum algebra is given by the
following deformed Poisson brackets and coproduct map � [19, 29]:

{J3, J+} = 2J+ cosh zJ−, {J3, J−} = −2
sinh zJ−

z
, {J−, J+} = 4J3, (3.1)

�(J−) = J− ⊗ 1 + 1 ⊗ J−,

�(Jl) = Jl ⊗ ezJ− + e−zJ− ⊗ Jl, l = +,3.
(3.2)

The deformed Casimir function for (3.1) reads

C = sinh zJ−
z

J+ − J 2
3 . (3.3)
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Table 2 Metric, sectional and scalar curvatures of the nine 3D CK spaces SOκ1,κ2 (4)/SOκ2 (3) expressed in
geodesic polar coordinates according to κ1, κ2 ∈ {±1,0}

Sphere S3 Euclidean E3 Hyperbolic H3

SO(4)/SO(3) ISO(3)/SO(3) SO(3,1)/SO(3)

(κ1, κ2) = (+1,+1) (κ1, κ2) = (0,+1) (κ1, κ2) = (−1,+1)

ds2
CK = dr2 + sin2 r ds2

CK = dr2 + r2 ds2
CK = dr2 + sinh2 r

× (dθ2 + sin2 θ dφ2) × (dθ2 + sin2 θ dφ2) × (dθ2 + sin2 θ dφ2)

Kij = +1, K = +6 Kij = 0, K = 0 Kij = −1, K = −6

Oscillating NH NH2+1+ Galilean G2+1 Expanding NH NH2+1−
T4  (SO(2) ⊗ SO(2))/ISO(2) IISO(2)/ISO(2) T4  (SO(1,1) ⊗ SO(2))/ISO(2)

(κ1, κ2) = (+1,0) (κ1, κ2) = (0,0) (κ1, κ2) = (−1,0)

ds2
CK = dr2 ds2

CK = dr2 ds2
CK = dr2

Kij = +1, K = +6 Kij = 0, K = 0 Kij = −1, K = −6

Anti-de Sitter AdS2+1 Minkowskian M2+1 de Sitter dS2+1

SO(2,2)/SO(2,1) ISO(2,1)/SO(2,1) SO(3,1)/SO(2,1)

(κ1, κ2) = (+1,−1) (κ1, κ2) = (0,−1) (κ1, κ2) = (−1,−1)

ds2
CK = dr2 − sin2 r ds2

CK = dr2 − r2 ds2
CK = dr2 − sinh2 r

× (dθ2 + sinh2 θ dφ2) × (dθ2 + sinh2 θ dφ2) × (dθ2 + sinh2 θ dφ2)

Kij = +1, K = +6 Kij = 0, K = 0 Kij = −1, K = −6

A one-particle symplectic realization of (3.1) turns out to be [19]

J
(1)
− = q2

1 , J
(1)
+ = sinh zq2

1

zq2
1

p2
1, J

(1)

3 = sinh zq2
1

zq2
1

q1p1, (3.4)

so that C(1) = 0. By starting from (3.4), the coproduct (3.2) determines the corresponding
two-particle realization of (3.1), which is defined on slz(2) ⊗ slz(2):

J
(2)
− = q2

1 + q2
2 , J

(2)
+ =

(
sinh zq2

1

zq2
1

ezq2
2

)
p2

1 +
(

sinh zq2
2

zq2
2

e−zq2
1

)
p2

2,

J
(2)

3 =
(

sinh zq2
1

zq2
1

ezq2
2

)
q1p1 +

(
sinh zq2

2

zq2
2

e−zq2
1

)
q2p2.

(3.5)

Then the two-particle Casimir is given by

C(2) = sinh zJ
(2)
−

z
J

(2)
+ − (

J
(2)

3

)2 =
(

sinh zq2
1

zq2
1

sinh zq2
2

zq2
2

e−zq2
1 ezq2

2

)
(q1p2 − q2p1)

2. (3.6)

This procedure can be iterated to arbitrary N . In particular the 3-sites coproduct, �(3) =
(� ⊗ id) ◦ � = (id ⊗ �) ◦ �, gives rise to a three-particle symplectic realization of (3.1)
defined on slz(2) ⊗ slz(2) ⊗ slz(2):

J
(3)
− = q2

1 + q2
2 + q2

3 ≡ q2,
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J
(3)

3 =
(

sinh zq2
1

zq2
1

ezq2
2 ezq2

3

)
q1p1 +

(
sinh zq2

2

zq2
2

e−zq2
1 ezq2

3

)
q2p2

+
(

sinh zq2
3

zq2
3

e−zq2
1 e−zq2

2

)
q3p3, (3.7)

J
(3)
+ =

(
sinh zq2

1

zq2
1

ezq2
2 ezq2

3

)
p2

1 +
(

sinh zq2
2

zq2
2

e−zq2
1 ezq2

3

)
p2

2 +
(

sinh zq2
3

zq2
3

e−zq2
1 e−zq2

2

)
p2

3.

It is immediate to check that these three functions fulfill the commutation rules (3.1) with
respect to the canonical Poisson bracket

{f,g} =
3∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

)
. (3.8)

Likewise, the three-particle Casimir function C(3) can be straightforwardly obtained.
In this way we have obtained a (three-particle) quantum deformation, in a generic Hopf

algebra framework, of the sl(2,R) Lie–Poisson algebra, understood as a more general struc-
ture that depends on the “additional” quantum deformation parameter z. This means that un-
der the classical limit z → 0 (or q → 1) the non-deformed Lie–Poisson brackets, Casimir,
primitive coproduct (�(X) = X ⊗ 1 + 1 ⊗ X) and symplectic realization of sl(2,R) are
recovered, the latter being J

(3)
− = q2, J

(3)
+ = p2 = ∑3

i=1 p2
i , J

(3)

3 = q · p = ∑3
i=1 qipi .

In the sequel we will show that this quantum deformation can be interpreted as an alge-
braic/geometric tool that introduces a non-constant curvature in a formerly flat 3D Euclid-
ean space E3, in such a manner that the deformation parameter z governs the (non-constant)
curvature of the underlying space. Note that the number of copies of slz(2,R) is just the
dimensionality of the space, and further iterations of the coproduct map would lead to an
ND construction.

3.2 Riemannian and (Non-)Relativistic Spaces of Non-Constant Curvature

An infinite family of 3D free (kinetic energy) Hamiltonians T [20] can be constructed in
terms of the generators (3.7) in the form:

T = 1

2
J

(3)
+ f (zJ

(3)
− ), (3.9)

where f is an arbitrary smooth function such that limz→0 f (zJ
(3)
− ) = 1, that is, limz→0 T =

1
2 p2 gives the usual kinetic energy on E3. Thus by writing (3.9) as the free Lagrangian,

T = 1

2

(
zq2

1

sinh zq2
1

e−zq2
2 e−zq2

3 q̇2
1 + zq2

2

sinh zq2
2

ezq2
1 e−zq2

3 q̇2
2 + zq2

3

sinh zq2
3

ezq2
1 ezq2

2 q̇2
3

)
f (zq2),

(3.10)
we obtain the geodesic flow on a 3D space with a definite positive metric given by

ds2 =
(

2zq2
1

sinh zq2
1

e−zq2
2 e−zq2

3 dq2
1 + 2zq2

2

sinh zq2
2

ezq2
1 e−zq2

3 dq2
2 + 2zq2

3

sinh zq2
3

ezq2
1 ezq2

2 dq2
3

)
1

f (zq2)
.

(3.11)
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If one computes the corresponding sectional Kij and scalar K curvatures associated to the
metric (3.11) one finds that, in general, these are non-constant; the latter turns out to be

K(x) = z
(
6f ′(x) coshx + (

4f ′′(x) − 5f (x) − 5f ′2(x)/f (x)
)

sinhx
)
, (3.12)

where x ≡ zJ
(3)
− = zq2, f ′(x) = df (x)

dx
and f ′′(x) = d2f (x)

dx2 . This, in turn, means that the de-
formed coalgebra process can be understood as the introduction of a non-constant curvature
on a formerly flat space E3. Hence the non-deformed or “classical” limit z → 0 can then be
identified with a proper flat contraction, under the which, the metric (3.11) reduces to the
3D Euclidean one in Cartesian coordinates, ds2 = ∑3

i=1 dq2
i , and the scalar curvature (3.12)

vanishes for any choice of the arbitrary function f (which always reduces to 1).
Furthermore the metric (3.11) can be rewritten in order to give rise to curved spaces

of pseudo- and semi-Riemannian type as well (with Lorentzian and degenerate metrics),
which can be thought as non-constant curvature deformations of the CK spaces described in
Sect. 2.3. Explicitly, we apply the following change of coordinates from q to the polar-type
ones (r, θ,φ) (compare to (2.18) for N = 3):

cos2(λ1r) = e−2zq2
,

tan2(λ1r) cos2(λ2θ) = e2zq2
1 e2zq2

2
(
e2zq2

3 − 1
)
,

tan2(λ1r) sin2(λ2θ) cos2 φ = e2zq2
1
(
e2zq2

2 − 1
)
,

tan2(λ1r) sin2(λ2θ) sin2 φ = e2zq2
1 − 1,

(3.13)

where we have denoted z = λ2
1 and we have introduced an additional parameter λ2 which

can be either a real or a pure imaginary number [19]. In this way, we find that the initial
Riemannian metric (3.11) is mapped into

ds2 = 1

cos(λ1r)g(λ1r)

(
dr2 + λ2

2

sin2(λ1r)

λ2
1

(
dθ2 + sin2(λ2θ)

λ2
2

dφ2

))

= 1

cos(λ1r)g(λ1r)
ds2

CK, (3.14)

where g(λ1r) ≡ f (zq2) is an arbitrary smooth function such that limλ1→0 g(λ1r) = 1. Thus
we have obtained a family of metrics, parametrized by λ1, λ2 and depending on the func-
tion g, which is just the metric of the 3D CK spaces of constant curvature ds2

CK (2.20)
multiplied by a “conformal” factor 1/(cos(λ1r)g(λ1r)), once we identify

κ1 ≡ z = λ2
1, κ2 ≡ λ2

2, κ3 = +1. (3.15)

Consequently, z plays a threefold role as a quantum deformation/contraction/curvature pa-
rameter, while λ2 is a (graded) classical contraction/signature parameter which allows us to
deal, simultaneously, with Riemannian, Lorentzian and degenerate metrics.

In this new coordinates the scalar curvature K (3.12) reads

K(y) = 2z cosy

((
1 + 3 cos2 y

sin 2y

)
g′(y) + g′′(y) − 5

4

g′(y)
2

g(y)
− 5

4
g(y) tan2 y

)
, (3.16)

where the radial variable y = λ1r . Then, according to the real values that z = λ2
1 and λ2

2 can
take, we find that (3.14) comprises the following types of spaces:
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• When z = λ2
1 > 0, we obtain a family of 3D “deformed” spherical S3

z (λ2
2 > 0), oscillating

NH NH2+1
+,z (λ2 = 0) and anti-de Sitter AdS2+1

z (λ2
2 < 0) spaces. For z = 1 (λ1 = 1), their

scalar curvature reads

K(r) = 2 cos r

((
1 + 3 cos2 r

sin 2r

)
g′(r) + g′′(r) − 5

4

g′(r)2

g(r)
− 5

4
g(r) tan2 r

)
.

• When z = λ2
1 = 0 we recover the proper flat E3 (λ2

2 > 0), G2+1 (λ2
2 = 0) and M2+1 (λ2

2 <

0) spaces of Table 2, all of them with Kij = K = 0. The underlying symmetry remains as
a Lie–Poisson one (non-deformed).

• And when z = λ2
1 < 0, we get a family of “deformed” 3D hyperbolic H3

z (λ2
2 > 0), ex-

panding NH NH2+1
−,z (λ2 = 0) and de Sitter dS2+1

z (λ2
2 < 0) spaces, with scalar curvature

for z = −1 (λ1 = i) given by

K(r) = −2 cosh r

((
1 + 3 cosh2 r

i sinh 2r

)
g′(ir) + g′′(ir) − 5

4

g′(ir)2

g(ir)
+ 5

4
g(ir) tanh2 r

)
.

In order to illustrate explicitly the above results we consider the simplest example corre-
sponding to set f (zJ

(3)
− ) = f (zq2) = g(λ1r) ≡ 1 in (3.11), that is, T = 1

2J
(3)
+ . In this case

the sectional Kij and scalar K curvatures in the coordinates q turn out to be [20]:

K12 = z

4
e−zq2(

1 + e2zq2
3 − 2e2zq2)

,

K13 = z

4
e−zq2(

2 − e2zq2
3 + e2z(q2

2 +q2
3 ) − 2e2zq2)

, (3.17)

K23 = z

4
e−zq2(

2 − e2z(q2
2 +q2

3 ) − 2e2zq2)
,

K = 2(K12 + K13 + K23) = −5z sinh(zq2).

In the polar-type coordinates with metric ds2 = ds2
CK/ cos(λ1r) these curvatures read

K12 = K13 = −1

2
λ2

1

sin2(λ1r)

cos(λ1r)
, K23 = 1

2
K12, K = −5

2
λ2

1

sin2(λ1r)

cos(λ1r)
. (3.18)

We display in Table 3 the six particular “deformed” spaces (with non-constant curvature)
arising for g = 1. We omit the Euclidean, Galilean and Minkowskian spaces, with z = 0, as
these remain flat/non-deformed as given in Table 2.

We remark that, in general, other choices for the geodesic motion Hamiltonian (3.9)
(with f 
= 1) give rise to more complicated spaces of non-constant curvature. We also stress
that the nine CK spaces of Table 2 can also be directly recovered from an slz(2)-coalgebra

symmetry by setting g(λ1r) = 1/ cos(λ1r) (f (zq2) = ezq2
), that is, T = 1

2J
(3)
+ ezJ

(3)
− . This is

a very singular case amongst the whole family of curved spaces determined by the metric
(3.14) since in this case all the curvatures are constant: Kij = z ≡ κ1 and K = 6z ≡ 6κ1.
Once again, the role of the deformation parameter z as a curvature becomes striking.

4 Concluding Remarks

The aim of this paper is to illustrate how a curvature can be understood either as a contraction
parameter or as a quantum deformation one. This is explicitly achieved by constructing,
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Table 3 Metric, sectional and scalar curvatures of six 3D spaces of non-constant curvature expressed in
polar-type coordinates with z = λ2

1 ∈ {±1} and λ2
2 ∈ {±1,0}. For the six cases the sectional curvature K23 =

K1j /2 with j = 2,3

Deformed sphere S3
z Deformed hyperbolic H3

z

z = +1; (λ1, λ2) = (1,1) z = −1; (λ1, λ2) = (i,1)

ds2 = 1

cos r
(dr2 + sin2 r(dθ2 + sin2 θ dφ2)) ds2 = 1

cosh r
(dr2 + sinh2 r(dθ2 + sin2 θ dφ2))

K1j = − sin2 r

2 cos r
, K = − 5 sin2 r

2 cos r
K1j = − sinh2 r

2 cosh r
, K = − 5 sinh2 r

2 cosh r

Deformed oscillating NH NH2+1+,z Deformed expanding NH NH2+1−,z

z = +1; (λ1, λ2) = (1,0) z = −1; (λ1, λ2) = (i,0)

ds2 = 1

cos r
dr2 ds2 = 1

cosh r
dr2

K1j = − sin2 r

2 cos r
, K = − 5 sin2 r

2 cos r
K1j = − sinh2 r

2 cosh r
, K = − 5 sinh2 r

2 cosh r

Deformed anti-de Sitter AdS2+1
z Deformed de Sitter dS2+1

z

z = +1; (λ1, λ2) = (1, i) z = −1; (λ1, λ2) = (i, i)

ds2 = 1

cos r
(dr2 − sin2 r(dθ2 + sinh2 θ dφ2)) ds2 = 1

cosh r
(dr2 − sinh2 r(dθ2 + sinh2 θ dφ2))

K1j = − sin2 r

2 cos r
, K = − 5 sin2 r

2 cos r
K1j = − sinh2 r

2 cosh r
, K = − 5 sinh2 r

2 cosh r

respectively, a family of symmetrical homogeneous CK spaces from a theoretical Lie group
approach and some non-constant curved spaces from a quantum group one. We remark that
although the CK algebras/spaces have been already described in arbitrary dimension N ,
their quantum deformed counterpart has only been presented here for N = 3. We recall that
the coalgebra procedure [20, 41] affords for the ND generalization of any 2D result which,
in fact, comes from the coproduct of the quantum algebra (so covering all the expressions
given in Sect. 3.1), but a clear geometrical/physical interpretation of the non-constant curved
spaces is not so straightforward. A deeper study of the ND coalgebra curved spaces is
currently under investigation.

On the other hand, from a dynamical viewpoint all the geodesic motions associated to the
family of (quantum deformed) metrics (3.14) are, in general, superintegrable since they are
endowed with three functionally independent integrals of motion, besides the free Hamil-
tonian. Such integrals come from the 2- and 3-particle Casimirs, and can be explicitly con-
structed. Nevertheless, by using the coalgebra approach there is always a constant of the mo-
tion left in order to ensure maximal superintegrability (this is a completely general fact [20]).
Such a family of geodesic motion Hamiltonians associated to (3.14), in coordinates (r, θ,φ)

and canonical conjugated momenta (pr ,pθ ,pφ), reads

T = 1

2
cos(λ1r)g(λ1r)

(
p2

r + λ2
1

λ2
2 sin2(λ1r)

(
p2

θ + λ2
2

sin2(λ2θ)
p2

φ

))
, (4.1)

where T = 2T (3.9). In this respect, we also stress that different superintegrable poten-
tials [20] on curved spaces with slz(2)-symmetry can be obtained by adding a potential
term U(zJ−) to T (4.1), since the superintegrability properties of the complete Hamiltonian
H = T + U can be shown to be preserved due to the underlying (quantum) coalgebra sym-
metry. Moreover, for the particular CK metrics (with g(λ1r) = 1/ cos(λ1r)) it is possible
obtain the additional integral by Lie algebraic methods, so that the corresponding kinetic
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energy on the CK spaces is, as it is well known, maximally superintegrable. Finally, it is
worthy of consideration the fact that although the underlying (deformed and CK) curved
spaces are always well defined for any value of λ1 and λ2, their corresponding metrics can-
not be used in a dynamical picture for the Newtonian spaces with degenerate metrics since
if λ2 → 0, then T → ∞.
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